进入信息化时代,数字经济蓬勃发展,数据的作用愈发凸显,数据要素价值更加突出。但同时,也要看到数据的“隐患”:若被别有用心之人非法获取、利用,极有可能对个人乃至社会造成严重的危害。
如何统筹好数据安全治理与发展,赋能国家高质量发展?在5月26日的中关村论坛分论坛之一——数据安全治理与发展论坛上,来自海内外的专家汇聚一堂,集智献策。
若将数字时代比作一栋楼,数据就好比是构成这栋楼的一块块砖,其重要性不言而喻。“数据是数字时代的基础性战略资源和关键性生产要素。”中国科学院院士冯登国指出。
楼要建得高,势必要求砖的承重能力强;对于我国来说,随着数字中国战略的深化,数据要素呈现出加速整合与互联互通的趋势,数据安全需求凸显。冯登国认为,数据泄露、数据破坏、隐私泄露、数据失控、数据滥用、数据损坏和丢失等因素威胁着数据安全。尤其是当下,云计算、大数据等新兴应用场景蓬勃发展,更是迫切需要对使用者的数据进行保护。
怎么保护数据?若保护得太“差”,可能起不到相应作用;但若保护得太“死”,数据的流动性就可能受限,而只有流动的数据才能产生价值。
在数据保护方面,中国有自己的经验。2021年,被誉为“数字时代基本法”的《个人信息保护法》落地实施,其中首次规定“个人信息可携带权”相关内容,不仅增强了个人对个人信息转移与再利用行为的控制,体现了将个人信息权利还归个人的立法思路,为个人信息流转提供了新的方向,也将为行业带来新的机遇。
香港科技大学讲座教授、加拿大工程院及加拿大皇家学院两院院士杨强观察到,当下,人们使用数据时,特别关心数据的安全和隐私。要解决数据安全与开放共享之间的矛盾,就要让数据“可用而不可见”。以联邦学习为代表的隐私计算成为满足该目标的重要技术路径。
在大多数情况下,人们都是将不同地点的数据上传到一个服务器中计算。而联邦学习,则是让数据留存在本地,用模型访问不同的数据库。“这就好比喂羊,我们不需要让草料去‘找’羊,只需要让羊去找草料。”杨强形象地解释道,这种方式能够让数据“可用而不可见”,极大提升了数据的安全性。
“安全、效率、效果这三者可以非常好地平衡。”杨强总结道,在多方合作、汇集多个数据源的前提下,运用联邦学习可以为人工智能打造通路,不仅能够保护每一个数据源的隐私和数据安全,还能够在符合《数据安全法》等法律法规和政策的规范下,促进大规模数据流动,激活数据要素价值。
人民网北京5月29日电 (记者王连香)近日,国家铁路局发布《2022年铁道统计公报》(以下简称《统计公报》)。 2022年,铁路行业坚持稳中求进工作总基调,完整、准确、全面贯彻新发展理念,服务加快构建新发展格局,高效统筹疫情防控和经济社会发展各项工作,统筹发展和安全,扎实推进中国式现代化,推动铁路高质量发展,为全面建设社会主义现代化国家开好局起好步作出新贡献。…
人民网北京5月29日电 (记者李栋)“AIGC元宇宙虚拟数字人”项目展示的元宇宙虚拟走秀;集光电技术、生物学技术和物联网技术造就的“植物工厂”……在正在举办的中关村论坛上,一批多场景、高水平的科技产品悉数登场,勾勒出由科技打造的美好生活新样态。 在北京海百川科技有限公司的展台里,观众不仅可以一秒进入元宇宙,还可以亲身扮演数字人,体验数字直播。…
关键词: