今日特推: 兰兰过桥教学反思什么原因?
搜索:
您的位置: 主页 > 二级建造师 > » 正文

柯兴氏综合症是个什么梗?

浏览: 1365 次 来源:网友供稿

  ,作者:梦晨、金磊,原文标题:《斯坦福“草泥马”火了:100美元就能比肩GPT-3.5!手机都能运行的那种》,题图来自:视觉中国

  斯坦福发布Alpaca(羊驼,网友口中的“草泥马”):只花100美元,人人都可微调Meta家70亿参数的LLaMA大模型,效果竟可比肩1750亿参数的GPT-3.5(text-davinci-003)。而且还是单卡就能运行的那种,甚至树莓派、手机都能hold住!

  研究所涉及到的数据集,是斯坦福团队花了不到500美元用OpenAI的API来生成的,所以整个过程下来,就等同于GPT-3.5自己教出了个旗鼓相当的对手AI。(薅羊毛高手……)

  然后团队还说,用大多数云计算平台去微调训练好的模型,成本也不到100美元:复制一个GPT-3.5效果的AI,很便宜,很容易,还很小。

  而且团队还把数据集(秒省500美元)、代码统统都给开源了,这下子人人都能去微调个效果炸裂的对话AI:

  草泥马Aplaca给出的答案较为干练:羊驼是一种小型骆驼科动物,原产于秘鲁、玻利维亚、厄瓜多尔和智利;它比美洲驼小,羊毛更细,也没有驼峰。

  同样的问题若是交给ChatGPT(GPT3.5-turbo),则答案就不会像“草泥马”Aplaca那般简洁:

  而后团队演示了让“草泥马”Alpaca写邮件:写一封E-mail祝贺被斯坦福大学录取的新生,并提到你很高兴能亲自见到他们。

  难度再次进阶,团队这次提出了让“草泥马”Alpaca写论文摘要的需求:写一篇经过深思熟虑的机器学习论文摘要,证明42是训练神经网络的最优seed。

  “草泥马”Alpaca给出的答案从内容上来看,非常符合大多数论文的摘要形式:试图回答什么问题、用了什么方法、结果如何,以及未来展望。

  例如团队便演示了一个例子,在回答“坦桑尼亚的首都是哪里”的问题时,草泥马Alpaca给出的答案是“达累斯萨拉姆”。

  在苹果笔记本部署LLaMA的方法来自GitHub项目llama.cpp,使用纯C/C++做推理,还专门对ARM芯片做了优化。

  还是这个C++移植版本,有人成功在4GB内存的树莓派4上成功运行了LLaMA的70亿参数版本。

  更离谱的是,仅仅2天之后,有人把LLaMA模型量化压缩(权重转换成更低精度的数据格式)后成功在Pixel 6安卓手机上运行(26秒一个token)。

  Pixel 6使用谷歌自研处理器GoogleTensor,跑分成绩在骁龙865+到888之间,也就是说新一点的手机理论上都能胜任。

  以175个问题作为种子任务,让AI自己从中组合出新的问题以及生成配套答案实例,人工过滤掉低质量的,再把新任务添加到任务池里。

  斯坦福版Alpaca,就是花了不到500美元使用OpenAI API生成了5.2万个这样的示例搞出来的。

  同时还给出了生成这些数据的代码,也就是说如果有人还嫌不够,可以再去自行扩充微调数据,继续提高模型的表现。

  不过Alpaca最终的模型权重需要Meta许可才能发布,并且继承了LLaMA的非商用开源协议,禁止任何商业用途。

  并且由于微调数据使用了OpenAI的API,根据使用条款也禁止用来开发与OpenAI形成竞争的模型。

  2022年上半年还只是线月份Stable Diffusion的开源让成本下降到可用,并由此产生爆炸式的工具创新,让AI绘画真正进入各类工作流程。

关键词:

关于我们 - 友情链接 - 广告合作 - 网站留言 - 联系我们 -